Problem
You are given an array nums
that consists of non-negative integers. Let us define rev(x)
as the reverse of the non-negative integer x
. For example, rev(123) = 321
, and rev(120) = 21
. A pair of indices (i, j)
is nice if it satisfies all of the following conditions:
0 <= i < j < nums.length
nums[i] + rev(nums[j]) == nums[j] + rev(nums[i])
Return the number of nice pairs of indices. Since that number can be too large, return it modulo 109 + 7
.
Example 1:
Input: nums = [42,11,1,97]
Output: 2
Explanation: The two pairs are:
- (0,3) : 42 + rev(97) = 42 + 79 = 121, 97 + rev(42) = 97 + 24 = 121.
- (1,2) : 11 + rev(1) = 11 + 1 = 12, 1 + rev(11) = 1 + 11 = 12.
Example 2:
Input: nums = [13,10,35,24,76]
Output: 4
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
Solution
/**
* @param {number[]} nums
* @return {number}
*/
var countNicePairs = function(nums) {
var diffArray = nums.map(num => {
var rev = Number(String(num).split('').reverse().join(''));
return num - rev;
}).sort((a, b) => a - b);
var tmp = 0;
var res = 0;
var mod = Math.pow(10, 9) + 7;
for (var i = 0; i < diffArray.length; i++) {
tmp += 1;
if (diffArray[i + 1] !== diffArray[i]) {
res += tmp * (tmp - 1) / 2;
res %= mod;
tmp = 0;
}
}
return res;
};
Explain:
nope.
Complexity:
- Time complexity : O(n * log(n)).
- Space complexity : O(n).