Problem
Given an array of integers nums
containing n + 1
integers where each integer is in the range [1, n]
inclusive.
There is only one repeated number in nums
, return this repeated number.
You must solve the problem without modifying the array nums
and uses only constant extra space.
Example 1:
Input: nums = [1,3,4,2,2]
Output: 2
Example 2:
Input: nums = [3,1,3,4,2]
Output: 3
Constraints:
1 <= n <= 105
nums.length == n + 1
1 <= nums[i] <= n
All the integers in
nums
appear only once except for precisely one integer which appears two or more times.
Follow up:
How can we prove that at least one duplicate number must exist in
nums
?Can you solve the problem in linear runtime complexity?
Solution 1
/**
* @param {number[]} nums
* @return {number}
*/
var findDuplicate = function(nums) {
var left = 0;
var right = nums.length - 1;
while (left < right) {
var mid = left + Math.floor((right - left) / 2);
var num = getNum(nums, mid);
if (num <= mid) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
};
var getNum = function(nums, n) {
var num = 0;
for (var i = 0; i < nums.length; i++) {
if (nums[i] <= n) num++;
}
return num;
};
Explain:
nope.
Complexity:
- Time complexity : O(n * log(n)).
- Space complexity : O(1).