Problem
You are given two arrays rowSum
and colSum
of non-negative integers where rowSum[i]
is the sum of the elements in the ith
row and colSum[j]
is the sum of the elements of the jth
column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.
Find any matrix of non-negative integers of size rowSum.length x colSum.length
that satisfies the rowSum
and colSum
requirements.
Return **a 2D array representing *any* matrix that fulfills the requirements**. It's guaranteed that **at least one **matrix that fulfills the requirements exists.
Example 1:
Input: rowSum = [3,8], colSum = [4,7]
Output: [[3,0],
[1,7]]
Explanation:
0th row: 3 + 0 = 3 == rowSum[0]
1st row: 1 + 7 = 8 == rowSum[1]
0th column: 3 + 1 = 4 == colSum[0]
1st column: 0 + 7 = 7 == colSum[1]
The row and column sums match, and all matrix elements are non-negative.
Another possible matrix is: [[1,2],
[3,5]]
Example 2:
Input: rowSum = [5,7,10], colSum = [8,6,8]
Output: [[0,5,0],
[6,1,0],
[2,0,8]]
Constraints:
1 <= rowSum.length, colSum.length <= 500
0 <= rowSum[i], colSum[i] <= 108
sum(rowSum) == sum(colSum)
Solution
/**
* @param {number[]} rowSum
* @param {number[]} colSum
* @return {number[][]}
*/
var restoreMatrix = function(rowSum, colSum) {
var m = rowSum.length;
var n = colSum.length;
var res = Array(m).fill(0).map(() => Array(n).fill(0));
for (var i = 0; i < m; i++) {
res[i][0] = rowSum[i];
}
for (var i = 0; i < n - 1; i++) {
for (var j = 0; j < m; j++) {
var num = Math.min(res[j][i], colSum[i]);
res[j][i + 1] = res[j][i] - num;
res[j][i] = num;
colSum[i] -= num;
}
}
return res;
};
Explain:
nope.
Complexity:
- Time complexity : O(n * m).
- Space complexity : O(n * m).