Problem
Given the root
of a binary search tree, and an integer k
, return the kth
smallest value (1-indexed) of all the values of the nodes in the tree.
Example 1:
Input: root = [3,1,4,null,2], k = 1
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
Output: 3
Constraints:
The number of nodes in the tree is
n
.1 <= k <= n <= 104
0 <= Node.val <= 104
Follow up: If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?
Solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} k
* @return {number}
*/
var kthSmallest = function(root, k) {
var queue = [root];
var num = 0;
while (queue.length) {
var node = queue.pop();
node.right && queue.push(node.right);
if (node.left) {
queue.push(new TreeNode(node.val));
queue.push(node.left);
} else {
num++;
if (num === k) return node.val;
}
}
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).