Problem
Given an array of positive integers nums
, return the **maximum possible sum of an *ascending* subarray in **nums
.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr]
is ascending if for all i
where l <= i < r
, numsi < numsi+1
. Note that a subarray of size 1
is ascending.
Example 1:
Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Example 2:
Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
Example 3:
Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
Solution
/**
* @param {number[]} nums
* @return {number}
*/
var maxAscendingSum = function(nums) {
var maxSum = nums[0];
var currSum = nums[0];
for (var i = 1; i < nums.length; i++) {
if (nums[i - 1] < nums[i]) {
currSum += nums[i];
} else {
maxSum = Math.max(maxSum, currSum);
currSum = nums[i];
}
}
return Math.max(maxSum, currSum);
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(1).