Problem
You are given an integer array nums
with no duplicates. A maximum binary tree can be built recursively from nums
using the following algorithm:
Create a root node whose value is the maximum value in
nums
.Recursively build the left subtree on the subarray prefix to the left of the maximum value.
Recursively build the right subtree on the subarray suffix to the right of the maximum value.
Return **the *maximum binary tree* built from **nums
.
Example 1:
Input: nums = [3,2,1,6,0,5]
Output: [6,3,5,null,2,0,null,null,1]
Explanation: The recursive calls are as follow:
- The largest value in [3,2,1,6,0,5] is 6. Left prefix is [3,2,1] and right suffix is [0,5].
- The largest value in [3,2,1] is 3. Left prefix is [] and right suffix is [2,1].
- Empty array, so no child.
- The largest value in [2,1] is 2. Left prefix is [] and right suffix is [1].
- Empty array, so no child.
- Only one element, so child is a node with value 1.
- The largest value in [0,5] is 5. Left prefix is [0] and right suffix is [].
- Only one element, so child is a node with value 0.
- Empty array, so no child.
Example 2:
Input: nums = [3,2,1]
Output: [3,null,2,null,1]
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
All integers in
nums
are unique.
Solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number[]} nums
* @return {TreeNode}
*/
var constructMaximumBinaryTree = function(nums) {
return solve(nums, 0, nums.length - 1);
};
var solve = function(nums, left, right) {
var maxI = left;
for (var i = left + 1; i <= right; i++) {
if (nums[i] > nums[maxI]) {
maxI = i;
}
}
return new TreeNode(
nums[maxI],
maxI > left ? solve(nums, left, maxI - 1) : null,
maxI < right ? solve(nums, maxI + 1, right) : null,
);
};
Explain:
nope.
Complexity:
- Time complexity : O(n ^ 2).
- Space complexity : O(n).