654. Maximum Binary Tree

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given an integer array nums with no duplicates. A maximum binary tree can be built recursively from nums using the following algorithm:

Return **the *maximum binary tree* built from **nums.

  Example 1:

Input: nums = [3,2,1,6,0,5]
Output: [6,3,5,null,2,0,null,null,1]
Explanation: The recursive calls are as follow:
- The largest value in [3,2,1,6,0,5] is 6. Left prefix is [3,2,1] and right suffix is [0,5].
    - The largest value in [3,2,1] is 3. Left prefix is [] and right suffix is [2,1].
        - Empty array, so no child.
        - The largest value in [2,1] is 2. Left prefix is [] and right suffix is [1].
            - Empty array, so no child.
            - Only one element, so child is a node with value 1.
    - The largest value in [0,5] is 5. Left prefix is [0] and right suffix is [].
        - Only one element, so child is a node with value 0.
        - Empty array, so no child.

Example 2:

Input: nums = [3,2,1]
Output: [3,null,2,null,1]

  Constraints:

Solution

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[]} nums
 * @return {TreeNode}
 */
var constructMaximumBinaryTree = function(nums) {
    return solve(nums, 0, nums.length - 1);
};

var solve = function(nums, left, right) {
    var maxI = left;
    for (var i = left + 1; i <= right; i++) {
        if (nums[i] > nums[maxI]) {
            maxI = i;
        }
    }
    return new TreeNode(
        nums[maxI],
        maxI > left ? solve(nums, left, maxI - 1) : null,
        maxI < right ? solve(nums, maxI + 1, right) : null,
    );
};

Explain:

nope.

Complexity: