Problem
The product difference between two pairs (a, b)
and (c, d)
is defined as (a * b) - (c * d)
.
- For example, the product difference between
(5, 6)
and(2, 7)
is(5 * 6) - (2 * 7) = 16
.
Given an integer array nums
, choose four distinct indices w
, x
, y
, and z
such that the product difference between pairs (nums[w], nums[x])
and (nums[y], nums[z])
is maximized.
Return **the *maximum* such product difference**.
Example 1:
Input: nums = [5,6,2,7,4]
Output: 34
Explanation: We can choose indices 1 and 3 for the first pair (6, 7) and indices 2 and 4 for the second pair (2, 4).
The product difference is (6 * 7) - (2 * 4) = 34.
Example 2:
Input: nums = [4,2,5,9,7,4,8]
Output: 64
Explanation: We can choose indices 3 and 6 for the first pair (9, 8) and indices 1 and 5 for the second pair (2, 4).
The product difference is (9 * 8) - (2 * 4) = 64.
Constraints:
4 <= nums.length <= 104
1 <= nums[i] <= 104
Solution
/**
* @param {number[]} nums
* @return {number}
*/
var maxProductDifference = function(nums) {
var maxIndex = -1;
var secondMaxIndex = -1;
var minIndex = -1;
var secondMinIndex = -1;
for (var i = 0; i < nums.length; i++) {
if (minIndex === -1 || nums[i] < nums[minIndex]) {
secondMinIndex = minIndex;
minIndex = i;
} else if (secondMinIndex === -1 || nums[i] < nums[secondMinIndex]) {
secondMinIndex = i;
}
if (maxIndex === -1 || nums[i] > nums[maxIndex]) {
secondMaxIndex = maxIndex;
maxIndex = i;
} else if (secondMaxIndex == -1 || nums[i] > nums[secondMaxIndex]) {
secondMaxIndex = i;
}
}
return nums[maxIndex] * nums[secondMaxIndex]
- nums[minIndex] * nums[secondMinIndex];
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(1).