1913. Maximum Product Difference Between Two Pairs

Difficulty:
Related Topics:
Similar Questions:

    Problem

    The product difference between two pairs (a, b) and (c, d) is defined as (a * b) - (c * d).

    Given an integer array nums, choose four distinct indices w, x, y, and z such that the product difference between pairs (nums[w], nums[x]) and (nums[y], nums[z]) is maximized.

    Return **the *maximum* such product difference**.

      Example 1:

    Input: nums = [5,6,2,7,4]
    Output: 34
    Explanation: We can choose indices 1 and 3 for the first pair (6, 7) and indices 2 and 4 for the second pair (2, 4).
    The product difference is (6 * 7) - (2 * 4) = 34.
    

    Example 2:

    Input: nums = [4,2,5,9,7,4,8]
    Output: 64
    Explanation: We can choose indices 3 and 6 for the first pair (9, 8) and indices 1 and 5 for the second pair (2, 4).
    The product difference is (9 * 8) - (2 * 4) = 64.
    

      Constraints:

    Solution

    /**
     * @param {number[]} nums
     * @return {number}
     */
    var maxProductDifference = function(nums) {
        var maxIndex = -1;
        var secondMaxIndex = -1;
        var minIndex = -1;
        var secondMinIndex = -1;
        for (var i = 0; i < nums.length; i++) {
            if (minIndex === -1 || nums[i] < nums[minIndex]) {
                secondMinIndex = minIndex;
                minIndex = i;
            } else if (secondMinIndex === -1 || nums[i] < nums[secondMinIndex]) {
                secondMinIndex = i;
            }
            if (maxIndex === -1 || nums[i] > nums[maxIndex]) {
                secondMaxIndex = maxIndex;
                maxIndex = i;
            } else if (secondMaxIndex == -1 || nums[i] > nums[secondMaxIndex]) {
                secondMaxIndex = i;
            }
        }
        return nums[maxIndex] * nums[secondMaxIndex]
            - nums[minIndex] * nums[secondMinIndex];
    };
    

    Explain:

    nope.

    Complexity: