Problem
You are given an integer array nums
and an integer k
. Find the maximum subarray sum of all the subarrays of nums
that meet the following conditions:
The length of the subarray is
k
, andAll the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0
.
**A *subarray* is a contiguous non-empty sequence of elements within an array.**
Example 1:
Input: nums = [1,5,4,2,9,9,9], k = 3
Output: 15
Explanation: The subarrays of nums with length 3 are:
- [1,5,4] which meets the requirements and has a sum of 10.
- [5,4,2] which meets the requirements and has a sum of 11.
- [4,2,9] which meets the requirements and has a sum of 15.
- [2,9,9] which does not meet the requirements because the element 9 is repeated.
- [9,9,9] which does not meet the requirements because the element 9 is repeated.
We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions
Example 2:
Input: nums = [4,4,4], k = 3
Output: 0
Explanation: The subarrays of nums with length 3 are:
- [4,4,4] which does not meet the requirements because the element 4 is repeated.
We return 0 because no subarrays meet the conditions.
Constraints:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
Solution
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var maximumSubarraySum = function(nums, k) {
var map = {};
var duplicateNums = 0;
var sum = 0;
for (var j = 0; j < k; j++) {
map[nums[j]] = (map[nums[j]] || 0) + 1;
sum += nums[j];
if (map[nums[j]] === 2) {
duplicateNums++;
}
}
var maxSum = duplicateNums === 0 ? sum : 0;
for (var i = k; i < nums.length; i++) {
var num = map[nums[i]] || 0;
var before = map[nums[i - k]];
map[nums[i]] = num + 1;
map[nums[i - k]]--;
sum += nums[i];
sum -= nums[i - k];
if (num === 1 && map[nums[i]] === 2) {
duplicateNums++;
}
if (before === 2 && map[nums[i - k]] === 1) {
duplicateNums--;
}
if (duplicateNums === 0) {
maxSum = Math.max(maxSum, sum);
}
}
return maxSum;
};
Explain:
Sliding window and hash map.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).