Problem
The pair sum of a pair (a,b)
is equal to a + b
. The maximum pair sum is the largest pair sum in a list of pairs.
- For example, if we have pairs
(1,5)
,(2,3)
, and(4,4)
, the maximum pair sum would bemax(1+5, 2+3, 4+4) = max(6, 5, 8) = 8
.
Given an array nums
of even length n
, pair up the elements of nums
into n / 2
pairs such that:
Each element of
nums
is in exactly one pair, andThe **maximum pair sum **is minimized.
Return **the minimized *maximum pair sum* after optimally pairing up the elements**.
Example 1:
Input: nums = [3,5,2,3]
Output: 7
Explanation: The elements can be paired up into pairs (3,3) and (5,2).
The maximum pair sum is max(3+3, 5+2) = max(6, 7) = 7.
Example 2:
Input: nums = [3,5,4,2,4,6]
Output: 8
Explanation: The elements can be paired up into pairs (3,5), (4,4), and (6,2).
The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8.
Constraints:
n == nums.length
2 <= n <= 105
n
is even.1 <= nums[i] <= 105
Solution
/**
* @param {number[]} nums
* @return {number}
*/
var minPairSum = function(nums) {
nums.sort((a, b) => a - b);
var res = 0;
for (var i = 0; i < nums.length / 2; i++) {
res = Math.max(res, nums[i] + nums[nums.length - i - 1]);
}
return res;
};
Explain:
nope.
Complexity:
- Time complexity : O(n * log(n)).
- Space complexity : O(1).