Problem
You are given a 0-indexed integer array nums
and an integer p
. Find p
pairs of indices of nums
such that the maximum difference amongst all the pairs is minimized. Also, ensure no index appears more than once amongst the p
pairs.
Note that for a pair of elements at the index i
and j
, the difference of this pair is |nums[i] - nums[j]|
, where |x|
represents the absolute value of x
.
Return **the *minimum* maximum difference among all **p
*pairs.* We define the maximum of an empty set to be zero.
Example 1:
Input: nums = [10,1,2,7,1,3], p = 2
Output: 1
Explanation: The first pair is formed from the indices 1 and 4, and the second pair is formed from the indices 2 and 5.
The maximum difference is max(|nums[1] - nums[4]|, |nums[2] - nums[5]|) = max(0, 1) = 1. Therefore, we return 1.
Example 2:
Input: nums = [4,2,1,2], p = 1
Output: 0
Explanation: Let the indices 1 and 3 form a pair. The difference of that pair is |2 - 2| = 0, which is the minimum we can attain.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= p <= (nums.length)/2
Solution
/**
* @param {number[]} nums
* @param {number} p
* @return {number}
*/
var minimizeMax = function(nums, p) {
nums.sort((a, b) => a - b);
var left = 0;
var right = nums[nums.length - 1] - nums[0];
while (left < right) {
var mid = left + Math.floor((right - left) / 2);
if (count(nums, mid) >= p) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
};
var count = function(nums, n) {
var num = 0;
for (var i = 0; i < nums.length - 1; i++) {
if (nums[i + 1] - nums[i] <= n) {
i++;
num++;
}
}
return num;
}
Explain:
nope.
Complexity:
- Time complexity : O(n * log(max - min)).
- Space complexity : O(1).