1289. Minimum Falling Path Sum II

Difficulty:
Related Topics:
Similar Questions:

Problem

Given an n x n integer matrix grid, return **the minimum sum of a *falling path with non-zero shifts***.

A falling path with non-zero shifts is a choice of exactly one element from each row of grid such that no two elements chosen in adjacent rows are in the same column.

  Example 1:

Input: grid = [[1,2,3],[4,5,6],[7,8,9]]
Output: 13
Explanation: 
The possible falling paths are:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
The falling path with the smallest sum is [1,5,7], so the answer is 13.

Example 2:

Input: grid = [[7]]
Output: 7

  Constraints:

Solution

/**
 * @param {number[][]} grid
 * @return {number}
 */
var minFallingPathSum = function(grid) {
    for (var i = 1; i < grid.length; i++) {
        var [minIndex, secondMinIndex] = findMinIndexs(grid[i - 1]);
        for (var j = 0; j < grid[i].length; j++) {
            grid[i][j] += grid[i - 1][minIndex === j ? secondMinIndex : minIndex];
        }
    }
    return Math.min(...grid[grid.length - 1]);
};

var findMinIndexs = function(arr) {
    var minIndex = arr[0] > arr[1] ? 1 : 0;
    var secondMinIndex = arr[0] > arr[1] ? 0 : 1;
    for (var i = 2; i < arr.length; i++) {
        if (arr[i] < arr[minIndex]) {
            secondMinIndex = minIndex;
            minIndex = i;
        } else if (arr[i] < arr[secondMinIndex]) {
            secondMinIndex = i;
        }
    }
    return [minIndex, secondMinIndex];
};

Explain:

nope.

Complexity: