Problem
Given 3 positives numbers a
, b
and c
. Return the minimum flips required in some bits of a
and b
to make ( a
OR b
== c
). (bitwise OR operation).
Flip operation consists of change any single bit 1 to 0 or change the bit 0 to 1 in their binary representation.
Example 1:
Input: a = 2, b = 6, c = 5
Output: 3
Explanation: After flips a = 1 , b = 4 , c = 5 such that (a OR b == c)
Example 2:
Input: a = 4, b = 2, c = 7
Output: 1
Example 3:
Input: a = 1, b = 2, c = 3
Output: 0
Constraints:
1 <= a <= 10^9
1 <= b <= 10^9
1 <= c <= 10^9
Solution
/**
* @param {number} a
* @param {number} b
* @param {number} c
* @return {number}
*/
var minFlips = function(a, b, c) {
var num = 0;
for (var i = 0; i < 32; i++) {
var n = Math.pow(2, i);
if ((c & n) && !(a & n) && !(b & n)) {
num += 1;
} else if (!(c & n)) {
if (a & n) num += 1;
if (b & n) num += 1;
}
}
return num;
};
Explain:
nope.
Complexity:
- Time complexity : O(1).
- Space complexity : O(1).