Problem
You are given an array of integers nums
and an integer target
.
Return **the number of *non-empty* subsequences of nums
such that the sum of the minimum and maximum element on it is less or equal to **target
. Since the answer may be too large, return it *modulo* 109 + 7
.
Example 1:
Input: nums = [3,5,6,7], target = 9
Output: 4
Explanation: There are 4 subsequences that satisfy the condition.
[3] -> Min value + max value <= target (3 + 3 <= 9)
[3,5] -> (3 + 5 <= 9)
[3,5,6] -> (3 + 6 <= 9)
[3,6] -> (3 + 6 <= 9)
Example 2:
Input: nums = [3,3,6,8], target = 10
Output: 6
Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers).
[3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6]
Example 3:
Input: nums = [2,3,3,4,6,7], target = 12
Output: 61
Explanation: There are 63 non-empty subsequences, two of them do not satisfy the condition ([6,7], [7]).
Number of valid subsequences (63 - 2 = 61).
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 106
1 <= target <= 106
Solution
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var numSubseq = function(nums, target) {
nums.sort((a, b) => a - b);
var res = 0;
var l = 0;
var r = nums.length - 1;
var mod = Math.pow(10, 9) + 7;
var pows = Array(nums.length);
pows[0] = 1;
for (var i = 1; i < nums.length; i++) {
pows[i] = (pows[i - 1] * 2) % mod;
}
while (l <= r) {
if (nums[l] + nums[r] <= target) {
res += pows[r - l];
res %= mod;
l++;
} else {
r--;
}
}
return res;
};
Explain:
- sort the array won't change the result, so we sort it first
- then use two pointer to find out answers
- keep it in mind: do not let numbers overflow
Complexity:
- Time complexity : O(nlog(n)).
- Space complexity : O(n).