1508. Range Sum of Sorted Subarray Sums

Difficulty:
Related Topics:
Similar Questions:

    Problem

    You are given the array nums consisting of n positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.

    **Return the sum of the numbers from index *left* to index right (indexed from 1), inclusive, in the new array. **Since the answer can be a huge number return it modulo 109 + 7.

      Example 1:

    Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
    Output: 13 
    Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13. 
    

    Example 2:

    Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
    Output: 6
    Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
    

    Example 3:

    Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
    Output: 50
    

      Constraints:

    Solution

    /**
     * @param {number[]} nums
     * @param {number} n
     * @param {number} left
     * @param {number} right
     * @return {number}
     */
    var rangeSum = function(nums, n, left, right) {
        var queue = new MinPriorityQueue();
        for (var i = 0; i < nums.length; i++) {
            queue.enqueue(i, nums[i]);
        }
        var res = 0;
        var mod = Math.pow(10, 9) + 7;
        for (var j = 0; j < right; j++) {
            var { element, priority } = queue.dequeue();
            if (element < nums.length - 1) {
                queue.enqueue(element + 1, priority + nums[element + 1]);
            }
            if (j >= left - 1) {
                res += priority;
                res %= mod;
            }
        }
        return res;
    };
    

    Explain:

    nope.

    Complexity: