Problem
You are given the array nums
consisting of n
positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2
numbers.
**Return the sum of the numbers from index *left
* to index right
(indexed from 1), inclusive, in the new array. **Since the answer can be a huge number return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
Output: 13
Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.
Example 2:
Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
Output: 6
Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
Example 3:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
Output: 50
Constraints:
n == nums.length
1 <= nums.length <= 1000
1 <= nums[i] <= 100
1 <= left <= right <= n * (n + 1) / 2
Solution
/**
* @param {number[]} nums
* @param {number} n
* @param {number} left
* @param {number} right
* @return {number}
*/
var rangeSum = function(nums, n, left, right) {
var queue = new MinPriorityQueue();
for (var i = 0; i < nums.length; i++) {
queue.enqueue(i, nums[i]);
}
var res = 0;
var mod = Math.pow(10, 9) + 7;
for (var j = 0; j < right; j++) {
var { element, priority } = queue.dequeue();
if (element < nums.length - 1) {
queue.enqueue(element + 1, priority + nums[element + 1]);
}
if (j >= left - 1) {
res += priority;
res %= mod;
}
}
return res;
};
Explain:
nope.
Complexity:
- Time complexity : O(n^2 * log(n)).
- Space complexity : O(n).