1140. Stone Game II

Difficulty:
Related Topics:
Similar Questions:

Problem

Alice and Bob continue their games with piles of stones.  There are a number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].  The objective of the game is to end with the most stones. 

Alice and Bob take turns, with Alice starting first.  Initially, M = 1.

On each player's turn, that player can take all the stones in the first X remaining piles, where 1 <= X <= 2M.  Then, we set M = max(M, X).

The game continues until all the stones have been taken.

Assuming Alice and Bob play optimally, return the maximum number of stones Alice can get.

  Example 1:

Input: piles = [2,7,9,4,4]
Output: 10
Explanation:  If Alice takes one pile at the beginning, Bob takes two piles, then Alice takes 2 piles again. Alice can get 2 + 4 + 4 = 10 piles in total. If Alice takes two piles at the beginning, then Bob can take all three piles left. In this case, Alice get 2 + 7 = 9 piles in total. So we return 10 since it's larger. 

Example 2:

Input: piles = [1,2,3,4,5,100]
Output: 104

  Constraints:

Solution

/**
 * @param {number[]} piles
 * @return {number}
 */
var stoneGameII = function(piles) {
    var dp = Array(piles.length).fill(0).map(() => ({}));
    var suffixSum = Array(piles.length);
    for (var i = piles.length - 1; i >= 0; i--) {
        suffixSum[i] = (suffixSum[i + 1] || 0) + piles[i];
    }
    return helper(piles, 0, 1, dp, suffixSum);
};

var helper = function(piles, i, M, dp, suffixSum) {
    if (dp[i][M]) return dp[i][M];
    var res = 0;
    var sum = 0;
    for (var j = 0; j < 2 * M && i + j < piles.length; j++) {
        sum += piles[i + j];
        res = Math.max(
            res,
            i + j + 1 === piles.length
                ? sum
                : sum + suffixSum[i + j + 1] - helper(piles, i + j + 1, Math.max(M, j + 1), dp, suffixSum)
        );
    }
    dp[i][M] = res;
    return res;
}

Explain:

nope.

Complexity: