Problem
You are given an integer array nums
sorted in non-decreasing order.
Build and return **an integer array *result
* with the same length as nums
such that result[i]
is equal to the summation of absolute differences between nums[i]
and all the other elements in the array.**
In other words, result[i]
is equal to sum(|nums[i]-nums[j]|)
where 0 <= j < nums.length
and j != i
(0-indexed).
Example 1:
Input: nums = [2,3,5]
Output: [4,3,5]
Explanation: Assuming the arrays are 0-indexed, then
result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4,
result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3,
result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.
Example 2:
Input: nums = [1,4,6,8,10]
Output: [24,15,13,15,21]
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= nums[i + 1] <= 104
Solution
/**
* @param {number[]} nums
* @return {number[]}
*/
var getSumAbsoluteDifferences = function(nums) {
var diffLeft = Array(nums.length);
for (var i = 0; i < nums.length; i++) {
if (i === 0) {
diffLeft[i] = 0;
} else {
diffLeft[i] = diffLeft[i - 1] + (nums[i] - nums[i - 1]) * i;
}
}
var diffRight = Array(nums.length);
for (var j = nums.length - 1; j >= 0; j--) {
if (j === nums.length - 1) {
diffRight[j] = 0;
} else {
diffRight[j] = diffRight[j + 1] + (nums[j + 1] - nums[j]) * (nums.length - 1 - j);
}
}
var diff = Array(nums.length);
for (var k = 0; k < nums.length; k++) {
diff[k] = diffLeft[k] + diffRight[k];
}
return diff;
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).