Problem
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output: true
Example 2:
5
/ \
1 4
/ \
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
Solution 1
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isValidBST = function(root) {
return helper(root, Number.MIN_SAFE_INTEGER, Number.MAX_SAFE_INTEGER);
};
var helper = function (root, min, max) {
if (!root) return true;
if (root.val <= min || root.val >= max) return false;
return helper(root.left, min, root.val) && helper(root.right, root.val, max);
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
n
为节点数。 - Space complexity : O(1).
Solution 2
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isValidBST = function(root) {
var prev = null;
var now = root;
var stack = [];
while (now || stack.length) {
while (now) {
stack.push(now);
now = now.left;
}
now = stack.pop();
if (prev && prev.val >= now.val) return false;
prev = now;
now = now.right;
}
return true;
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
n
为节点数。 - Space complexity : O(n).